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ABSTRACT

Environmental enrichment (EE) has been successfully implemented in human rehabilitation settings. However,
the mechanisms underlying its success are not understood. Incorporating components of EE protocols into our
animal models allows for the exploration of these mechanisms and their role in mitigation. Using a mouse model
of maternal immune activation (MIA), the present study explored disruptions in social behavior and associated
hypothalamic pituitary adrenal (HPA) axis functioning, and whether a supportive environment could prevent
these effects. We show that prenatal immune activation of toll-like receptor 3, by the viral mimetic polyinosinic-
polycytidylic acid (poly(I:C)), led to disrupted maternal care in that dams built poorer quality nests, an effect
corrected by EE housing. Standard housed male and female MIA mice engaged in higher rates of repetitive
rearing and had lower levels of social interaction, alongside sex-specific expression of several ventral hippo-
campal neural stress markers. Moreover, MIA males had delayed recovery of plasma corticosterone in response to
a novel social encounter. Enrichment housing, likely mediated by improved maternal care, protected against
these MIA-induced effects. We also evaluated c-Fos immunoreactivity associated with the novel social experience
and found MIA to decrease neural activation in the dentate gyrus. Activation in the hypothalamus was blunted in
EE housed animals, suggesting that the putative circuits modulating social behaviors may be different between
standard and complex housing environments. These data demonstrate that augmentation of the environment
supports parental care and offspring safety/security, which can offset effects of early health adversity by buff-
ering HPA axis dysregulation. Our findings provide further evidence for the viability of EE interventions in
maternal and pediatric settings.

1. Introduction

In preclinical research, rodent models of maternal immune activa-
tion (MIA) have been widely used to investigate biological mechanisms

Pregnancy is a vital period for offspring brain development and the
trajectory of this growth may be impacted by disruptions in maternal
health. Human epidemiological research has revealed an association
between infection during gestation and risk for neurodevelopmental
disorders (Babulas et al., 2006; Estes and McAllister, 2016; Sgrensen
et al., 2008). With the outbreak and worldwide spread of coronavirus
disease 2019 (COVID-19), the long-lasting risks that gestational in-
fections pose to offspring has gained significant attention (Cavalcante
et al., 2020). It is critical to understand the underlying pathogenic
mechanisms associated with these infections, and potential therapeutic
interventions.
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that underlie behavioral and cognitive abnormalities relevant to psy-
chopathology (Estes and MecAllister, 2016; Kentner et al., 2019a;
Knuesel et al., 2014; Bauman & Van de Water, 2020). For example, a
mid-gestational injection of the viral mimetic polyinosinic:polycytidylic
acid (poly (I:C)), a commercially available synthetic analog of double-
stranded RNA, can induce an extensive collection of innate immune
responses (Mueller et al., 2019) and lead to a wide array of abnormal-
ities in brain morphology (Li et al., 2009; Meyer et al., 2006) as well as
neurochemical and pharmacological reactions (Zuckerman et al., 2003a,
2003b) associated with altered behaviors and cognitive abilities (Li
et al., 2014; Ozawa et al., 2006). Despite the abovementioned progress
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in unravelling the disruptive effects of MIA, we still have a limited un-
derstanding of how gestational immune insults alter the neurobiological
substrates that underlie behavioral displays relevant to psychopathol-
ogy, and more importantly, the potential for protective strategies
against MIA-induced neurodevelopmental trajectories.

The ventral hippocampus is an anatomically heterogeneous brain
region that demonstrates remarkable plasticity (Fanselow and Dong,
2010). This region has been implicated in modulating social interactions
(Bagot et al., 2015; Felix-Ortiz and Tye, 2014), anxiety-like behaviors,
and regulation of the stress response (Gulyaeva, 2019; McEwen et al.,
2015). In anxiogenic environments, increased neural activity of the
ventral, but not dorsal, hippocampus is associated with elevated displays
of anxiety-related behaviors (Adhikari et al., 2010; 2011). This associ-
ation is mediated, at least partially, by synchronized neural activity
between the ventral hippocampus and the prefrontal cortex (PFC), to
promote anxiety-related behaviors (Adhikari et al., 2010; 2011;; Padilla-
Coreano et al., 2016). Previous work has demonstrated disruptive effects
of MIA on several aspects of hippocampal anatomy and functioning,
including decreased levels of glucocorticoid receptors and glutamate
(Connors et al., 2014), altered glutamate decarboxylase expression
(Dickerson et al., 2014) and lower glucose uptake (Hadar et al., 2015).
Together, this work implicates the ventral hippocampus as an important
brain site for mediating MIA’s disruptive effects on social behaviors and
stress responses.

One characteristic of MIA’s effects is that many phenotypic abnor-
malities are not fully developed until late in adolescence or early
adulthood (Ozawa et al., 2006; Piontkewitz et al., 2011; Zuckerman
et al., 2003), which gives a time window for the application of potential
therapeutic interventions. However, there has been relatively little
evaluation on how supportive measures may protect the brain and
behavior (Kentner et al., 2019b; Luby et al., 2020). Environmental
enrichment (EE) is a non-invasive and non-pharmacological therapy
characterized by exposure to novel environments with rich social,
motor, cognitive and sensory stimulation. Growing evidence has shown
that exposure to an enriched environment can enhance brain plasticity
(e.g., increased dendritic branching, synaptogenesis, neurogenesis etc;
Brenes et al., 2016; Kolb et al., 1998; Van Praag et al., 2000), the
turnover of several neurotransmitters (Escorihuela et al., 1995; Hilario
et al., 2016), as well as improvement in cognitive functions (Williams
et al., 2020; Zeleznikow-Johnston et al., 2017). In humans, EE has been
used to reverse behavioral and cognitive impairments associated with
stroke, cerebral palsy, and autism (Aronoff et al., 2016; de Brito Brandao
et al., 2019; Janssen et al., 2014; Morgan et al., 2014, 2015; Rosbergen
et al., 2017; Woo et al., 2015). Using animal models of health and dis-
ease to explore these benefits of EE provide insight into the underlying
biological mechanisms of its successes and limitations.

In the animal laboratory, Van Dellen et al., (2000) were the first to
demonstrate that living in spatially complex environments (i.e., EE)
delayed the appearance of neurological symptoms of Huntington’s dis-
ease, and thereafter EE has been shown to improve brain pathology in
animal models of Alzheimer’s disease and major depression (Chourbaji
et al., 2011; Herring et al., 2009). A previous study using a poly (I:C)
mouse model found that MIA interfered with the supportive effects of
post-weaning EE (Buschert et al., 2016). However, this study employed
male CD-1 mice that become aggressive when housed in EE (McQuaid
etal., 2012, 2013, 2018). The experience of unstable social hierarchies’
and territorial aggression (e.g., fighting for resources/EE devices) likely
created a negative, as opposed to enriching, environment.

Our lab has previously used rat models of prenatal lipopolysaccha-
ride (LPS) administration to assess the beneficial effects of EE (Connors
et al., 2014; Kentner et al., 2016, 2018a; Ntnez Estevez et al., 2020;
Zhao et al., 2020) and its beneficial effects may be mediated through its
interaction with maternal care, which impacts offspring development
via nursing behaviors and nutritional provisioning, in addition to tem-
perature regulation (Francis and Meaney, 1999; Connors et al., 2015).
Although previous studies on the protective effects of EE revealed
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ambiguous findings regarding maternal nursing behaviors (e.g., licking,
grooming, and crouching; Begenisic et al., 2015; Cutuli et al., 2015; de
Jong et al., 1998; Li et al., 2016; Sale et al., 2004; Strzelewicz et al.,
2019; Welberg et al., 2006), enriched dams generally showed better
nest-building quality (Cutuli et al., 2015). In contrast to EE’s positive
effects, gestational treatment with poly (I:C) led to deficient maternal
care behaviors (Ronovsky et al., 2017; Schwendener et al., 2009).
Collectively, prior research lends some support to the idea that EE may
interact with parental care to offset effects of early health adversities by
buffering hypothalamic pituitary adrenal (HPA) axis dysregulation.
Indeed, when used in pediatric clinical settings, the benefits of EE are
mediated at least in part by caregiver engagement (Aronoff et al., 2016;
Bowman & Evans, 2019; de Brito Brandao et al., 2019; Morgan et al.,
2014, 2015; Woo et al., 2015).

Building upon our previous work in rats, the current study aimed to
examine if the protective effects of EE on social behavior and HPA axis
regulation extends to toll-like 3 receptor activation by using a poly (I:C)-
induced MIA model in mice. Importantly, we used C57BL/6J mice,
which are a less aggressive strain; they did not demonstrate evidence of
increased fighting in response to higher cage densities and competition
for resources (Nicholson et al., 2009), suggesting that EE is appropriate
for these animals.

2. Materials and methods
2.1. Animals and housing

C57BL/6J mice were acquired from the Jackson Laboratory (Bar
Harbor, ME), and housed at 20 °C on a 12 h light/dark cycle (0700-1900
light) with ad libitum access to food and water. A schematic timeline of
experimental procedures is presented in Fig. 1A. Female mice were
housed in pairs in one of two conditions: environmental enrichment (EE;
N40HT mouse cage, Ancare, Bellmore, NY; see Fig. 1B), comprised of a
larger cage and access to toys, tubes, a Nylabone, Nestlets® (Ancare,
Bellmore, NY) and Bed-r’ Nest® (ScottPharma Solutions, Marlborough
MA), or standard cages (SD; N10HT mouse cage, Ancare, Bellmore, NY;
see Fig. 1C) with Nestlets® and a Nylabone only. Male animals were
paired in SD conditions unless they were breeding, at which point they
were housed with two females in EE or SD cages. Immediately after
breeding, dams were placed into clean cages, maintaining their assigned
housing conditions.

On the morning of gestational day (G)12, pregnant dams were
randomly allocated to receive a 20 mg/kg intraperitoneal injection of
polyinosine-polycytidylic acid (poly (I:C); tlrl-picw, lot number PIW-
41-03, InvivoGen), or vehicle (sterile pyrogen-free 0.9% NaCl). Twenty-
four hours later, maternal body weights were recorded to validate the
poly (I:C) challenge by either slowed weight gain or loss. To ensure the
safety of the pups, toys and Nylabones® were removed on G19 and
returned after maternal nest quality evaluations on postnatal day (P)15.
In an attempt to maintain standardized litter sizes, some pups were
fostered to same age and group matched dams. Additional methodo-
logical details can be found in the reporting table from Kentner et al.
(2019a), provided as Supplementary Table S1. Animal procedures were
approved by the MCPHS University Institutional Animal Care and Use
Committee and carried out in compliance with the recommendations
outlined by the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health.

2.2. Nest building quality

While there are some inconsistencies in the literature, some in-
vestigators find that gestational poly (I:C) alters parental care quality (e.
g., licking/grooming, nursing, time off nest) (Weber-Stadlbauer et al.,
2020; Ronovsky et al., 2017; Schwendener et al., 2009). Enriched en-
vironments are also known to change patterns of maternal behavior in
rats, and in some cases seem to make dams more efficient in their care
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Fig. 1. Experimental timeline and maternal measures. (A) Flow chart of experiment procedures. Pictures of the (B) environmental enrichment and (C) standard
housing conditions. (D) Maternal body weight differences (grams) between gestational days (G) 11 to G12 and days G12 to G13, and (E) postnatal day 15 nest quality
scores following maternal immune activation (MIA) and environmental enrichment housing. Data are expressed as mean + SEM, n = 12-14 dams per MIA and
housing group. *p < 0.05, **p < 0.01, ***p < 0.001, versus SD-saline; #p < 0.05, ##p < 0.01, ###p < 0.001, versus EE-poly (I:C).

duties (Baldini et al, 2013; Connors et al., 2015; Strzelewicz et al., 2019;
Welberg et al., 2006). Extensive maternal care observations are difficult
with our mouse model as the dams tend to build tall dome-shaped nests,
hiding their pups and obscuring maternal-pup interactions. Therefore,
we conducted passive maternal nest quality observations on P15. This
was done 24 h after litters were placed into a fresh cage and each dam
provided with four fresh Nestlets® (Ancare, Bellmore, NY). Nest quality
was scored on a 5-point Likert scale, adapted from Gerfen et al., (2006)
in which 0 = no nest; 1 = flat nest; 2 = a slightly cupped shape but<1/2
of a dome shape; 3 = taller than 1/2 of a dome shape, but not fully
enclosed and 4 = fully enclosed nest/dome. We also recorded the
number of unused Nestlets®.

2.3. Offspring behavior

Offspring were weaned into same-sex groups on P21 and maintained
in their housing assignments until behavioral tests commenced (SD =
2-3 animals/cage; EE = 4-5 animals/cage). Supplementary Table S2
outlines the litters and treatment groups for the study. On P70, one male
and one female from each litter was habituated to an open field arena
(40 cm x 40 cm x 28 cm) for three-minutes (Duque-Wilckens et al.,
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2020; Williams et al., 2020). Behavior was recorded and videos scored
via an automated behavioral monitoring software program (Cleversys
TopScan, Reston, VA) for percent time spent in the center of the arena
and total distance traveled (mm). Rearing and grooming behaviors were
evaluated using the same procedures as the social tests described below.
All equipment was thoroughly cleaned with Quatriside TB between each
animal and test. Immediately after the open field habituation period,
two cleaned wire containment cups were placed on opposite ends of the
arena for the five-minute social preference test. One cup contained a
novel untreated adult mouse of the same sex, age, and strain and the
other cup contained a novel object. Placement of novel mice and objects
was interchanged between trials. A mouse was actively investigating
when its nose was directed within 2 cm of a containment cup or it was
touching the cup. For each animal, a social preference index was
calculated by the formula ([time spent with the mouse] / [time spent
with the inanimate object + time spent with the mouse]) - 0.5 (Scar-
borough et al., 2020).

To determine neuronal activation associated with a social experi-
ence, animals were re-introduced to the open field arena on P85, but this
time only one wire cup containing an unfamiliar mouse of the same sex,
age, and strain was presented. Duration of time animals spent actively
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investigating the novel mouse was evaluated across the 10-minute social
exposure period. We also assessed time spent in the interaction zone and
vigilance behavior during the first three-minutes of the social exposure
(adapted from Duque-Wilckens et al., 2020; Williams et al., 2020).
Briefly, social interaction was defined as the time animals spent within 8
cm (interaction zone) of the novel mouse. A mouse was demonstrating
social vigilance when its head was oriented towards the novel mouse
when outside of the interaction zone. Blinded observers evaluated all
social behavior videos for the frequency of rearing behavior and dura-
tion of grooming and social behaviors using a manual behavioral scoring
software program (ODLog™ 2.0, http://www.macropodsoftware.
com/). Inter-rater reliability was determined by Pearson r correlation
to be 0.860-0.900 for each manually scored behavior.

2.4. Tissue collection and analysis

Ninety minutes after the P85 social investigation exposure, brains
were collected for c-Fos immunohistochemistry and qPCR analyses. A
mixture of Ketamine/Xylazine (150 mg/kg, i.p/15 mg/kg, i.p) was used
to anesthetize animals. Blood was collected via cardiac puncture and
placed into an ethylenediaminetetraacetic acid (EDTA)-coated micro-
tainer tube (Becton Dickson, Franklin Lakes New Jersey). Samples were
centrifuged at 1000 relative centrifugal force (rcf) for 10 min for plasma
separation. Animals were perfused intracardially with a chilled phos-
phate buffer solution. Prefrontal cortex, hippocampus, and hypothala-
mus were dissected from the left hemisphere. Samples were frozen on
dry ice and stored at — 75 °C until processing. The right hemisphere was
post-fixed in a 4% paraformaldehyde, phosphate buffer 0.1 M solution
(BM-698, Boston BioProducts) overnight at 4 °C. Tissue was then sub-
merged in ice cold 10% sucrose in PBS (with 0.1% sodium azide) and
incubated at 4 °C overnight. The following day, solution was replaced
with 30% sucrose in PBS for 3 days. Tissue was rapidly flash frozen with
2-methylbutane (O3551-4, Fisher Scientific) and stored at — 75 °C until
sectioning.

2.5. Corticosterone assay

Plasma samples were evaluated with a corticosterone ELISA kit
(#ADI-900-097, Enzo Life Sciences, Farmingdale, NY). The small sam-
ple assay protocol was followed, as recommended by the manufacturer,
and each sample was processed in duplicate. The minimum detectable
concentration was 26.99 pg/ml, and the intra- and inter-assay co-
efficients of variation were 6.6% and 7.8%, respectively.

2.6. RT-Pcr Gene expression analyses

Total RNA was extracted from frozen tissue using the RNeasy Lipid
Tissue Mini Kit (Qiagen, 74804) and resuspended in RNase-free water.
Isolated RNA was quantified utilizing a NanoDrop 2000 spectropho-
tometer (ThermoFisher Scientific). According to the manufacturer’s
protocol, total RNA was reverse transcribed to cDNA with the Tran-
scriptor High Fidelity ¢cDNA Synthesis Kit (#5081963001, Millipore
Sigma) and the final cDNA solution was stored at —20 °C for analysis.
Quantitative real-time PCR with Tagman™ Fast Advanced Master Mix
(#4444963, Applied Biosystems) was used to measure the mRNA
expression of corticotropin releasing hormone (Crh, Mm01293920 s1),
Crh receptor 1 (Crhrl, Mm00432670_m1), glucocorticoid receptor
(Nr3cl, Mm00433832_m1), oxytocin (Oxt, Mm00726655_s1), oxytocin
receptor (Oxytr, Mm01182684_m1), vasopressin receptor (Avprla,
MmO00444092_m1x), calcium/calmodulin dependent protein kinase II
alpha (Camk2a, Mm00437967_m1), and protein kinase C alpha (Prkca,
MmO00440858_m1). All reactions were analyzed in triplicate using op-
tical 96-well plates (Applied Biosystems StepOnePlus™ Real-Time PCR
System) and relative gene expression levels were evaluated using the 2
“AACT method with 18S (Hs99999901_s1). This housekeeping gene was
selected as it was not affected by MIA or housing condition. Gene
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expression was normalized in relation to 18S and data presented as
mean expression relative to same sex SD-saline treated controls.

2.7. Immunohistochemistry

Coronal sections (40 um thick) were obtained on a cryostat (Leica
CM1860) as a 1:4 series and stored at —20 °C in cryoprotectant until
immunocytochemistry. Free-floating sections were washed in PBS to
remove the cryoprotectant prior to incubation in rabbit anti-cFos pri-
mary antibody (1:5000; ABE457, Millipore Sigma) for one hour at room
temperature (RT) and 48 h at 4 °C. Tissue was then washed in PBS and
incubated in goat anti-rabbit IgG biotinylated secondary antibody
(1:600) for one hour at RT. Tissue was washed in PBS and incubated in
A/B solution (A and B solutions of the Vectastain® Elite ABC-HRP Kit,
#PK-6161, Vector Laboratories) for one hour at RT. This was followed
by another PBS wash after which tissue was briefly washed in 0.175 M
sodium acetate and incubated with 3,3'-Diaminobenzidine tetrahydro-
chloride (Ni-DAB; #D5905-50TAB, Millipore Sigma). Sections were then
washed briefly with 0.05 M sodium acetate and PBS and stored at 4 °C in
PBS until mounting. Tissue was mounted in 0.85% saline and slides air-
dried for 48 h before being dehydrated in an alcohol dilution series,
cleared in xylene, and cover slipped with DPX (#06522-100ML, Milli-
pore Sigma). Slides were imaged on a Keyence Microscope [BZ-X800,
Keyence] and the number of Fos-immunoreactive cells in each region
of interest was counted by two experimenters blind to experimental
treatments during counting. Inter-rater reliability was determined by
Pearson r correlation to be 0.830-0.990 for each brain region evaluated.
The area of each selected region was measured with NIH ImageJ soft-
ware (Schneider et al., 2012) to determine the number of stained cells
per square millimeter. Prelimbic and infralimbic regions of the medial
prefrontal cortex were identified using the Allen Mouse Brain Atlas
image 36 (Allen Institute for Brain Science, 2011), as were regions of the
ventral (v) hippocampus (e.g., vCAl, CA2, vCA3, dentate gyrus), the
supramammillary nucleus (SuM) and whole hypothalamus (image 81).

2.8. Statistical analysis

Statistics were performed using the software package Statistical
Software for the Social Sciences (SPSS) version 26.0 (IBM, Armonk, NY).
The assumption of normality was evaluated with the Shapiro-Wilk test
and Kruskal-Wallis tests (expressed as X%) employed in rare cases of
significantly skewed data. Maternal body weights were evaluated using
repeated measures 2-way ANOVA (MIA x housing). Since qPCR data
were normalized to same sex controls, a 2-way ANOVA (MIA x housing)
was conducted for each gene of interest in each sex separately. The
remaining measures were evaluated with 3-way ANOVAs (sex x MIA x
housing). Pearson correlations were analyzed between the P85 social
measures versus ventral hippocampal Fos -immunoreactivity and gene
expression. LSD post hocs were applied except where there were fewer
than three levels, in which case pairwise t-tests and Levene’s (applied in
the occurrence of unequal variances) were utilized. The False Discovery
Rate (FDR) was applied to correct for multiple testing procedures in all
gene expression and correlation experiments. All data are graphically
expressed as mean + SEM. If there were no significant sex differences,
data were collapsed together for visualization. The partial eta-squared
() is also reported as an index of effect size for the ANOVAs (the
range of values being 0.02 = small effect, 0.13 = moderate effect, 0.26
= large effect; Miles and Shevlin, 2001).

3. Results

3.1. MIA challenge interferes with maternal body weight gain and nesting
behaviors while EE supports maternal care quality

To validate the integrity of our MIA model, we evaluated maternal
body weight gain following gestational poly (I:C) challenge. While
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baseline weight gain was comparable across conditions (p > 0.05), dams
treated with poly (I:C) had considerably slower body weight gain
compared to saline (p = 0.001; Fig. 1D) 24 h after challenge (time x MIA:
F(1, 46) = 27.433, p = 0.001, nf, = 0.374). This provides evidence that
our poly (I:C) administration protocol induced an immune response
(Kentner et al., 2019a).

On P14, dams were given four Nestlets® and nest construction
quality evaluated 24 h later. There were no differences across treatments
in terms of the number of nesting resources used (p > 0.05; data not
shown). However, SD-poly (I:C) dams constructed nests of significantly
poorer quality compared to SD-saline (X%(1) = 6.378, p = 0.012) and EE-
poly (I:C) mice ) = 7.84, p = 0.005; Fig. 1E). There were no dif-
ferences between EE-saline and EE-poly (I:C) nest quality (p > 0.05),
highlighting the protective effects of enhanced environments on
parental care.

Brain Behavior and Immunity 95 (2021) 203-215

3.2. Environmental enrichment blocks prenatal poly (I:C) induced
reductions in social motivation and associated displays of repetitive
behavior

While there is a strong focus on identifying the negative conse-
quences and mechanisms of MIA on the developing brain and behavior,
very little attention is directed towards the prevention or rehabilitation
of these effects in laboratory animal studies (Kentner et al., 2019b).
Given EE’s protective effects in the LPS-indued MIA model (Nunez et al.,
2020; Connors et al., 2014), we determined whether this protection
extended to the poly (I:C) model of MIA. As expected, P70 social pref-
erence was significantly reduced by poly (I:C)-induced MIA in both SD
males (Fig. 2A) and females (Fig. 2B; MIA x housing: F(1, 83) = 7.047, p
= 0.010, nﬁ = 0.078). This effect was completely blocked by enriched
housing (SD-saline vs SD-poly (I:C): p = 0.005; SD-poly (I:C) vs EE-poly
(I:C): p = 0.0001; Fig. 2A-C).
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Fig. 2. The effects of maternal immune activation (MIA) and environmental enrichment on adult offspring social behavior. (A-G) Represent data from the postnatal
day (P) 70 social preference test. Social preference index for (A) male, (B) female and (C) both sexes combined. (D) Percent of time in the center and (E) distance
traveled (mm) in the open field test for male and female offspring. (F) The duration (seconds) of time spent grooming and (G) the number of rears. (H-L) Represent
data from the P85 social investigation test. The duration of time (seconds) spent directly investigating a novel conspecific for (H) male and (I) female offspring. Total
time (seconds) that (J) males and (K) females spent in the interaction zone during the social investigation experience. (L) Total time (seconds) that male and female
mice spent in social vigilance. Data are expressed as mean + SEM, n = 9-13 litters represented per sex, MIA, and housing group. *p < 0.05, **p < 0.01, ***p < 0.001,
versus SD-saline; #p < 0.05, ##p < 0.01, ###p < 0.001, versus EE-poly (I:C); “p < 0.05, *p < 0.01, ***p < 0.001, main effect of housing.
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To determine whether the effect of MIA on social interest was
reflective of an increased anxiety-like phenotype, we evaluated behav-
iors in the P70 open field test. During this assessment it was apparent
that only housing condition (F(1,83) = 4.024, p = 0.048, nf, = 0.049)
impacted the percentage of time spent in the center of the arena (EE:
32.69 +1.36 vs SD 29 + 1.39; p = 0.028; Fig. 2D). Distance traveled was
not affected by any treatment condition (p > 0.05; Fig. 2E). Male ani-
mals reared more frequently than females (p < 0.05; Supplementary
Figs. S1A,B; P70 main effect of sex: F(1, 83) = 5.518, p = 0.021, nf, =
0.062; P85 main effect of sex: F(1,81) = 4.436, p = 0.038, ng = 0.051)
and female EE mice groomed more than SD females (p = 0.0001; Sup-
plementary Figs. S1C,D; sex x housing: F(1,81) = 4.352, p = 0.040, nf, =
0.050) in the open field test, but there was no effect of MIA on these
measures. EE animals tend to display higher levels of body licking
behavior as they habituate more quickly to novel environments (Rojas-
Carvajal et al., 2018). Here, EE-saline mice groomed longer during the
social preference test, an effect that was blunted by MIA (EE-saline vs EE-
poly (I:C): X2(1) = 7.899, p = 0.005; Fig. 2F). However, there were no
group differences in grooming during the P85 social investigation test (p
> 0.05; Supplementary Fig. S1E).

In contrast, during the P70 social preference test, male and female
SD-poly (I:C) mice showed a higher frequency of rearing behaviors
compared to same-sex SD-saline (p = 0.024) and EE-poly (I:C) mice (p =
0.006; Fig. 2G; MIA x housing: F(1, 83) = 4.313, p = 0.035, p = 0.035,
n? = 0.054).

To more fully characterize the heightened stress response/delayed
stress recovery associated with MIA, we exposed animals to a social
stimulus on P85 to correlate behavior with c-Fos activation and gene
expression ninety minutes later. Male SD-poly (I:C) mice spent less time
directly engaging with the novel mouse compared to SD-saline males (p
= 0.010) across the 10 min test period (sex x MIA: (F(1, 81) = 9.209, p
=0.003, nf = 0.102; MIA x housing: F(1, 81) = 5.546, p = 0.012, nf =
0.075; Fig. 2H,I). As expected, male and female EE animals spent more
time in direct social contact compared to SD mice (p = 0.001), blocking
the attenuating effect of poly (I:C) on social behavior. Patterns of poly (I:
C) impeding male social interest (p = 0.002), and EE increasing social
interest (p = 0.0001), were again confirmed by the respective reduced
and elevated times spent within the interaction zone (sex x MIA x
housing: F(1, 81) = 11.162, p = 0.001, n2 = 0.120; Fig. 2J,K). While
social vigilance was not directly impacted by MIA (p > 0.05), it was
significantly reduced by EE housing (SD: 4.96 + 1.16 vs EE: 3.10 £ 0.46;
X2(1) = 4.171, p = 0.041; Fig. 2L), which may account for higher in-
stances of social contact from these animals.

3.3. MIA reduced c-Fos activation in the dentate gyrus of male and female
offspring

Ninety minutes following the P85 social exposure, we evaluated c-
Fos activation throughout brain regions critical to anxiety-like and social
behavior (Ko, 2017; Chen et al., 2020; Walsh et al., 2020; Fig. 3A,B).
There were no main effects or interactions with respect to sex, so male
and female data were collapsed and visualized together. Although c-Fos
activation in the medial prefrontal cortex (prelimbic and infralimbic
regions; Fig. 3C) and hippocampal vCA1, CA2, and vCA3 regions were
not affected (p > 0.05; Fig. 3D), in the hippocampus MIA significantly
decreased the number of c-Fos immunoreactive cells expressed in the
dentate gyrus (DG; X2(1) = 4.001, p = 0.0.045; MIA: x=97.35 + 12.68
vs Saline: x= 174.91 + 31.98; Fig. 3D). The DG is important for the
mediation of odor and reward processing, in addition to social recog-
nition and social avoidance (Kesner, 2018; Kheirbek et al., 2013; Wee-
den et al., 2015).

3.4. Environmental enrichment housing remodels neuronal activation
patterns associated with a novel social experience

Neurons in the supramammillary nucleus (SuM) are activated during
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novel social interactions (Chen et al., 2020). Specifically, contextual
novelty reportedly activates the SuM-dentate gyrus circuit and social
novelty activates a SuM-CA2 circuit (Chen et al., 2020; Walsh et al.,
2020). This led us to evaluate c-Fos immunoreactivity in this hypotha-
lamic region following MIA. While evaluation of the SuM revealed a
significant MIA by housing interaction (F(1, 50) = 4.098, p = 0.048, ng
= 0.076; Fig. 3E), follow-up tests were not significant. However, housing
significantly affected c-Fos activation in the hypothalamus (including
the SuM region; XX(1) = 4.137, p = 0.042; Fig. 3E) during the P85 social
exposure. The lower neural activation of EE animals (x = 133.87 +
20.25) in this region may be indicative of their faster habituation rates
compared to SD (x = 214.23 + 29.64; Rojas-Carvajal et al., 2018).
Fig. 3F shows representative samples of c-Fos staining for each experi-
mental group.

Pearson’s correlations confirmed that direct social investigation of
the novel mouse on P85 was positively associated with elevated c-Fos
immunoreactivity in the hypothalamus of standard housed animals (r =
0.429, p = 0.025; Fig. 3G); this effect was blunted in EE mice (p > 0.05;
Fig. 3G).

Hypothalamic c-Fos activity was not correlated with time spent in the
interaction zone, or social vigilance (p > 0.05), highlighting the speci-
ficity of this activation. During the P85 social exposure, neural activa-
tion in the hypothalamus (including the SuM) was strongly and
positively correlated with vCA1 (r = 0.734, p = 0.0001), CA2 (r = 0.703,
p = 0.0001), vCA3 (r = 0.736, p = 0.0001), and DG (r = 0.725, p =
0.0001) in SD animals. However, these putative circuit associations
were lost with a more complex EE housing condition (p > 0.05). A priori
tests of MIA and housing interactions among these associations again
demonstrated strong positive correlations between hypothalamus +
SuM with regions vCA1, CA2, vCA3 and DG in SD-saline housed mice (p
< 0. 05; Fig. 3H) during the P85 social exposure. Most of these associ-
ations were maintained with MIA treatment in SD animals (Fig. 3I),
except for the relationship with the DG which was lost (p > 0.05).
Interestingly, EE housing disrupted many of the associations observed in
SD animals (Fig. 3J,K). This may be an important consideration when
trying to understand complex neural circuits using simplistic environ-
mental conditions (Kentner et al., 2018¢).

3.5. MIA-induced dysregulation of stress associated markers in the ventral
hippocampus is antagonized by environmental enrichment

Following the P85 social exposure, several mRNA expression pat-
terns emerged throughout the brain as a function of MIA. While there
was no treatment effect on hippocampal expression of Oxt mRNA (p >
0.05; Supplementary Table S3), Oxtr was elevated in SD-poly (I:C) males
(p = 0.003) and lowered in SD-poly (I:C) females (p = 0.029) compared
to their respective same-sex SD-saline and poly (I:C) enriched counter-
parts (males: (F(1, 28) = 6.383, p = 0.017, nf, = 0.186); females: (F(1,
28) = 7.912p = 0.009, nZ = 0.220; Fig. 4A,B).

Male (F(1, 28) = 25.143, p = 0.001, ng = 0.473; Fig. 4C) and female
hippocampal Crh (F(1, 28) = 5.673, p = 0.024, nf, = 0.168; Fig. 4D) was
also associated with significant MIA by housing effects. Specifically, SD-
poly (I:C) mice had elevated levels of Crh compared to SD-saline (males:
p = 0.001) and EE-poly (I:C) animals (males: p = 0.003; females: p =
0.0001). Male EE-saline mice had higher Crh compared to SD-saline (p
=0.003) and EE-poly (I:C) animals (p = 0.016) as well. Notably, SD-poly
(I:C) males also had enhanced expression of Crhrl in the ventral hip-
pocampus (SD-saline: p = 0.001; EE-poly (I:C): p = 0.001), while EE-
saline animals did not (p > 0.05; MIA x housing: F(1, 28) = 8.512, p
0.007, nﬁ = 0.233; Fig. 4E,F). Similar patterns of sex-specific
expression associated with MIA were observed for hippocampal Nr3cl
(male MIA x housing: F(1, 28) = 46.319, p = 0.0001, nZ = 0.623); fe-
males: p > 0.05; Fig. 4G,H), Prkca (male MIA by housing: F(1, 28) =
35.560, p = 0.0001, nf, = 0.559; female MIA x housing: F(1, 28) =7.153,
p=0.01 nf, = 0.203; Supplementary Table S3), and Camk2a (male MIA
x housing: F(1, 28) = 5.685, p = 0.024, nﬁ = 0.169; females: p > 0.05;
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Fig. 3. Central c-Fos activation following a postnatal day (P) 85 social exposure in male and female offspring exposed to maternal immune activation (MIA) and
environmental enrichment (EE). (A) Coronal section of the medial prefrontal cortex, including prelimbic (PL) and infralimbic (IL) regions. (B) Coronal section of the
hippocampus and hypothalamus including CA1, CA2, CA3, dentate gyrus (DG), the supramammillary nucleus (SuM) and whole hypothalamus. Mean c-Fos (per mm?)
in the (C) medial prefrontal cortex PL and IL regions, (D) hippocampus (CA1, CA2, CA3, DG), and (E) SuM and whole hypothalamus following a ten-minute exposure
to a novel social conspecific. (F) Representative images of c-Fos immunostaining in the dentate gyrus (top) and hypothalamus, including SuM (bottom) of standard
housed (SD)-saline, SD-poly (I:C), EE-saline and EE-poly (I:C) male and female offspring. Scale bar equals 200 pm. (G) Pearson correlations of c-Fos activation and
time (seconds) spent in direct social investigation, for SD (top) and EE (bottom) mice. Correlated neural activity patterns computed from Pearson’s bivariate cor-
relations of c-Fos positive cells between the hypothalamus (including SuM) and hippocampal regions for (H) SD-saline, (I) SD-poly (I:C), (J) EE-saline, and (K) EE-
poly (I:C) mice. Mean + SEM. There were no significant sex differences so male and female data were collapsed together; n = 13-17 total per group. °p < 0.05, **p <

5, bb.

p < 0.01, main effect of MIA; *p < 0.05, **p < 0.01, significant Pearson’s correlations.

0.01, main effect of housing; bp < 0.0

Supplementary Table S3). Overall, these data suggest that male SD-poly
(I:C) animals are either demonstrating a heightened acute stress
response and/or impaired ability to cope and recover from stress.
Moreover, these effects can be blocked by enrichment housing. Addi-
tional sex, MIA and housing effects were revealed for the expression of
genes in the prefrontal cortex, ventral hippocampus, and hypothalamus
which can be found in Supplementary Table S3.

3.6. Glucocorticoid associated recovery following a social stress exposure
is delayed in MIA offspring

Elevated plasma corticosterone level is one indicator of an active
stress response (McEwen et al., 2015). Ninety minutes following the
social stress exposure, male SD-poly (I:C) mice still demonstrated
elevated levels of this steroid hormone compared to SD-saline (p =
0.0001) and EE-poly (I:C) animals (p = 0.008; F(1, 55) = 8.781, p =
0.004, , ng = 0.138; Fig. 41,J), indicative of delayed stress recovery in
these mice. While enrichment housing was associated with lower plasma
corticosterone in poly (I:C) treated males, EE-saline males had elevated
levels of this steroid hormone (SD-saline: p = 0.001; EE-poly: 0.019) and
hippocampal Nr3cl (SD-saline: p = 0.0001; EE-poly: 0.0001; Fig. 4G).

3.7. Ventral hippocampal gene expression is sex-dependently associated
with P85 social investigation

Direct social investigation of the novel mouse was associated with
sex-specific ventral hippocampal gene expression, supporting a role for
these genes in our social behavior measures. Specifically, higher levels of
Nr3cl, Crhrl, CamK2a (males), Oxt and Crh (females) were associated
with lower social exploration levels (Fig. 4K-O). Reduced time spent in
the interaction zone was similarly associated with higher levels of genes
in this region (males: Nr3cl, Crh, Crhrl, Camk2a, Prkca; females: Oxt;
(Fig. 4P-T). In contrast, heightened social vigilance was correlated with
higher expression of several stress-associated gene markers in the
ventral hippocampus (males: Nr3cl, Crh; females: Nr3cl, Camk2a,
Oxytr; Fig. 4U-Y).

4. Discussion

In the current study, we demonstrate that poly (I:C)-induced MIA
imposes sex-specific disruptions on a variety of physiological and
behavioral indices. Importantly, EE housing buffered many of these MIA
effects, as reflected by more regulated displays of affiliative behaviors
and a reduction in repetitive actions. Moreover, MIA associated eleva-
tions in plasma corticosterone, and several hippocampal mRNA markers
indicative of HPA axis dysregulation, were dampened by the environ-
mental intervention. Our results underscore the hippocampus as a re-
gion mediating MIA’s disruptive effects and as a target for interventions
such as EE. We also observed MIA to impair maternal nest building
quality, which was prevented by EE housing. This suggests that parental
care may be an important mediator of EE’s benefits. Altogether, these
data highlight the role of MIA in the behavioral expression and alter-
ation of neural activities and markers associated with stress responses
(Estes and McAllister, 2016; Knuesel et al., 2014). Moreover, our find-
ings identify underlying mechanisms that support EE as a protective
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strategy against MIA-induced neurodevelopmental abnormalities.

4.1. The effects of MIA and EE on maternal nesting behavior

Maternal immune activation not only affects offspring behavior, but
the parental behavior of the dam as well. The poor nest quality displayed
by our MIA mothers echoes previous observations on the consequences
of gestational immune insult (Aubert et al., 1997). Quality nest building
is critical for maintaining pup thermoregulation (Weber and Olsson,
2008). Deterioration of the nest impacts its internal temperature, which
may affect the HPA-axis development of offspring (Jans and Woodside,
1990). MIA exposed dams also spend more time building their nest, and
this trait can be transmitted to following generations (Berger et al.,
2018; Ronovsky et al., 2017). Our data showing poorer nest quality adds
to these findings and together suggests that poly (I:C) treated mothers
may be less efficient or skilled in maternal care overall.

Supportive EE interventions can help buffer the effects of MIA on
maternal nest building behavior. The mechanisms underlying the dis-
rupted nest building performance remains unclear as nest-building is a
complex behavior that requires fraying, pulling, sorting, and fluffing of
nest materials (Gaskill et al., 2012). Changes in motivation or motor
ability for any of these behaviors can impact nest building quality. In
addition to MIA, other stressors experienced prenatally such as scrapie
infection (Cunningham et al., 2003), or heat and restraint (Kinsley and
Svare, 1988), have also impaired nest-building behaviors. This suggests
that reductions in nest quality were precipitated by stress. Therefore, the
protective effects of EE on nest building are likely mediated, at least in
part, by enhancing parental stress resilience (Crofton et al., 2015; Leh-
mann and Herkenham, 2011). Prior to the nest quality evaluation, EE
dams had been provided with additional nesting materials (i.e., Bed-r-
Rest discs + Nestlets®). This supplemental support may have primed
EE-poly (I:C) dams to be more responsive to the materials available to
them during the nest construction test. Indeed, a previous report showed
that extra naturalistic nesting materials prompted mice to construct
complex dome-shaped nests, similar to those in the wild (Hess et al.,
2008) and what we tended to see in our SD-saline and EE dams here.

4.2. The effects of MIA and EE on offspring social behavior

MIA exposed mice demonstrated evidence of social aversion which
was buffered by EE housing. In line with previous evidence (Choi et al.,
2016; Hsiao et al., 2012, 2013; Scarborough et al., 2020; Schwartzer
et al., 2013; Smith et al., 2007), prenatal poly (I:C) injection reduced
social preference for a novel same-sex individual. We speculate that for
our MIA-treated SD animals, interactions with novel mice were experi-
enced as a stressor rather than as an appetitive experience. Consistent
with this interpretation, many of our SD-poly (I:C) animals had negative
social preference scores suggesting that, in addition to disrupted social
motivation, these animals had increased levels of social aversion as well.
This notion is further supported by data of MIA mice engaging in higher
rates of unsupported rearing behaviors during the social preference test.

Unsupported rearing is a type of risk assessment behavior displayed
when confronted with threatening stimuli (Blanchard et al., 2011;
Blanchard and Blanchard, 1989). Stressful experiences also promote the
expression of this behavior (Sturman et al., 2018). Together, the reduced
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Fig. 4. Ventral hippocampal gene expression following maternal immune activation (MIA) and environmental enrichment housing. Male and female offspring levels
of (A, B) Oxtr, (C, D) Crh, (E, F) Crhrl, (G, H) and Nr3cl expressed as relative mRNA expression and (I, J) plasma corticosterone. Pearson correlations of ventral
hippocampal relative mRNA expression and time (seconds) spent in (K-O) direct social investigation, (P-T) the interaction zone, and (U-Y) social vigilance on
postnatal day 85. Gene expression data are expressed as Mean + SEM, n = 8 litters represented per sex, MIA, and housing group. *p < 0.05, **p < 0.01, ***p < 0.001,

versus SD-saline; #p < 0.05, ##p < 0.01, ###p < 0.001, versus EE-poly (I:C)

social preference and the enhanced display of social aversion and rear-
ing are indicative of heightened stress reactivity in SD-poly (I:C) mice.
As we have found previously with the LPS-MIA model in rats (Connors
et al., 2014; Nunez Estevez et al., 2020; Zhao et al., 2020) life-long EE
housing prevented reductions in social interaction and seemed to
attenuate activation of the stress response.
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4.3. The effects of MIA on hippocampal activity and the display of social
behavior

MIA may also impair approach-avoidance conflict decision-making,
implicating the hippocampus in disrupted social interactions. The de-
cision to approach or to avoid a novel social stimulus is likely the net
result of multiple (conflicting) motives including the motivation to
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approach an appetitive stimulus and the motivation to avoid a potential
threat (Brodkin et al., 2004; Elliot and Covington, 2001). Aberrant
approach/avoidance processes are linked to autism, depression, and
anxiety disorders (Heuer et al., 2007; Pfaff and Barbas, 2019; Radke
et al., 2014). In an anxiety-provoking condition, SD-poly (I:C) mice may
be less efficient at solving approach-avoidance decision-making con-
flicts. This notion is supported by our finding of diminished c-Fos
immunoreactivity in the dentate gyrus, a region implicated in the
regulation of approach-avoidance behaviors under innately anxiogenic
and stressful conditions (Kheirbek et al., 2013; Weeden et al., 2015).
However, data are inconsistent regarding the direction of dentate gyrus’
effects on approach behaviors (Kheirbek et al., 2013; Weeden et al.,
2015). Although the specific role of the dentate gyrus is beyond the
scope of the current study, our results suggest that reduced dentate gyrus
activity may contribute to the impaired social preference in SD-MIA
mice. While EE housing did not prevent this reduced neural activity
following the social exposure, its beneficial effects appear to be medi-
ated through other mechanisms more specific to HPA axis regulation.

4.4. The effects of MIA and EE on hippocampal feedback regulation of the
HPA axis

In general, MIA appears to disrupt the hippocampal feedback regu-
lation of the HPA axis, particularly in males, leading to delayed stress
recovery following social stressor exposure. This is supported by the
ventral hippocampal mRNA expression data showing higher levels of
Crh in both male and female SD-poly (I:C) mice, 90 min following stress,
compared to the SD-saline controls. Also, CRH and glucocorticoid re-
ceptors (Crhrl and Nr3cl), as well as plasma corticosterone, were
elevated in SD-poly (I:C) males, underscoring the sex-specific nature of
this HPA axis dysregulation, despite the shared behavioral phenotype.
The occurrence of males and females displaying similar behavioral
phenotypes regulated through separate sex-specific mechanisms is not
unique (see Sorge et al., 2015). Additionally, there are well known sex
differences that underlie the function of the stress axis. For example, sex
differences in Crhrl receptor binding may account for differences in
receptor number and distribution (Kokras et al., 2019). It is likely that
the HPA axis is driving some of the behavioral phenotypes that follow
MIA, at least in part, but the female biomarkers only sometimes align
with males due to the sex differences that underlie these mechanisms.

In addition to sex differences, there are also housing differences in
HPA axis regulation. While EE attenuated many of the hippocampal
gene expression changes that accompanied MIA, curiously, Crh expres-
sion and plasma corticosterone was elevated in EE-saline mice. This
could be indicative of the ‘double edged sword’ of EE, in that for some
male animals, it may be aversive (McQuaid et al., 2012, 2013). Espe-
cially with male CD-1 mice, EE can induce fighting depending on the
enrichment devices used. However, in our C57BL/6J strain we did not
observe physical indicators of distress or fighting among animals. One
consideration is that we did not measure Crhr2, and the relative
expression of these receptors, alongside Crhrl (Skelton et al., 2000;
Miiller et al., 2003; Bale & Vale, 2004; Greetfeld et al., 2009; Wang et al.,
2012), may be responsible for the more regulated social interactions and
stressor responses demonstrated by EE-saline mice. Indeed, in our pre-
vious work we have shown EE housing to decrease the relative Crhrl/
Crhr2 expression in the brain (Kentner et al., 2018c). Moreover, receptor
expression and engagement with their ligands are what underlie
neurophysiological and behavioral phenotypes.

Overall, it is unclear whether EE-saline males were displaying in-
dicators of a disrupted stress recovery. However, elevated hippocampal
glucocorticoid receptor expression (Vivinetto et al., 2013) and plasma
corticosterone have been reported in EE housed animals previously
(Konkle et al., 2010; Smith et al., 2017; Moncek et al., 2004); higher
basal plasma corticosterone levels in EE animals has also been hypoth-
esized as a potential indicator for eustress (Selye, 1956; Konkle et al.,
2010). It is possible that poly (I:C) impeded these effects through
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separate mechanisms. However, given the protection of the social
behavior phenotypes, it could be that EE overcompensated against the
effects of MIA. Since EE-saline mice did not demonstrate behavioral
impairments we do not believe that the elevated HPA activity in these
animals are indicative of pathogenic processes.

4.5. Novel Sex-Specific effects of MIA on the oxytocin system in the
ventral hippocampus

The antistress effects of oxytocin in the hippocampus (Matsuchita
et al.,, 2019) are altered by MIA challenge. In this study we observed
elevations of hippocampal Oxtr in MIA males. A similar effect was
observed in adult male rats that underwent prenatal restraint stress;
these animals displayed an anxious/depressive phenotype, alongside
reductions in the duration of social interactions and depolarization-
evoked glutamate release in the ventral hippocampus (Mairesse et al.,
2015). Other work has also shown early-life stress to alter the devel-
opment of hippocampal oxytocin receptors (Noonan et al., 1994).
Moreover, chronic stress and corticosterone implants increase oxytocin
receptor binding in the ventral hippocampus (Liberzon and Young,
1997). However, the specific roles of increased oxytocin receptor
binding remain unclear.

To our knowledge, this is the first study revealing effects of MIA and
EE on the ventral hippocampal oxytocin system in females. Notably,
there are significant sex differences in oxytocin receptor binding
throughout forebrain regions of the brain that correlate with social in-
terest (Dumais et al., 2013). Indeed, upregulation of Oxtr mRNA in area
CA1 of the female hippocampus is hypothesized to increase social in-
terest (Quinones-Jenab et al., 1997; Dumais et al., 2013). Here, we
observed reduced hippocampal Oxtr and social interest in our SD-poly (I:
C) female mice, an effect rescued by EE. Overall, our results suggest
opposite effects on Oxtr expression in male and female mice despite both
sexes demonstrating similar social phenotypes. This again suggests that
females are vulnerable to MIA challenges, but their impairments are at
least in part mediated through separate mechanisms from males (Ntinez
Estevez et al., 2020).

5. Conclusions
5.1. The protective potential of supportive interventions

The current study demonstrates that the disruptive effects of MIA on
social behaviors are associated with HPA axis dysregulation in the
ventral hippocampus. The protective effects of EE reported here are
consistent with our previous studies showing that EE can rescue MIA-
impaired social behaviors induced by LPS (Connors et al., 2014; Kent-
ner et al., 2016, 2018b; Nunez Estevez et al., 2020; Zhao et al., 2020).
Life-long EE may serve as an intervention to rescue these deficits by its
ability to dampen activity of the HPA axis. When interpreting these
findings, it is important to note that the validation of our model was
done by evaluating maternal body weight gain following poly (I:C)
challenge. The lack of maternal cytokine data to accompany this vali-
dation protocol is a limitation of this work. Additionally, it is difficult to
isolate the critical timing of EE exposure that produced the beneficial
effects reported in this study, and whether they are due to enhanced
parental care during the early neonatal period. This is because EE
removal induces depression-like behaviors and decreases the peak
glucocorticoid response to acute stress (Smith et al., 2017). It should be
noted that EE did not buffer all the MIA-induced changes in brain and
behavior, but its success does appear to be most potent against social
impairments and neural indicators of stress dysregulation.

Given the translational applications of EE as an intervention for
humans (Janssen et al., 2014; Morgan et al., 2014; Rosbergen et al.,
2017; Woo et al., 2015), our findings shed light on the sex-specific
neural mechanisms that underlie its therapeutic success. Importantly,
this work provides evidence for EE to be a viable supportive intervention
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against MIA in clinical settings, to be used alone or in combination with
other treatments as appropriate.
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